OBERSEMINAR

Algorithmische Algebra und Diskrete Mathematik

The Tutte Polynomial of Ideal Arrangements

Referent: Hery Randriamaro
(Gast aus Madagaskar, Stipendiat der AvH-Stiftung, Institut für Mathematik der Universität Kassel)
Termin: \quad Mittwoch, 28. Juli 2021, 15.15 Uhr
Ort:
Raum 2420, Heinrich-Plett-Str. 40, AVZ, Kassel-Oberzwehren

Abstract

: The Tutte polynomial was at the origin in 1954 a bivariate polynomial enumerating the colorings of a graph and of its dual graph. But it reveals more of the internal structure of the graph like its number of forests, of spanning subgraphs, and of acyclic orientations. Ardila extended in 2007 the notion of Tutte polynomial to hyperplane arrangements. At the same time, he computed the Tutte polynomial of the hyperplane arrangements associated with the root systems of the classical Weyl groups. The Tutte polynomials associated to the root systems of the exceptional Weyl groups were computed by De Concini and Procesi one year later. We consider the hyperplane arrangements associated with ideals of the root system of a Weyl group. These arrangements were introduced in 2006 by Sommers and Tymoczko. The talk assumes that the subject does not belong to the main field of expertise of a significant part of the audience. That is why enough time will be taken to define important notions like the Tutte polynomial, the Weyl groups, and the ideals of a root system even if they could seem to be basic. We also expose our results from 2020 concerning the Tutte polynomial of hyperplane arrangements associated with ideals of a classical root system. Then, we finish with an introduction of an open problem on the Tutte polynomial of hyperplane arrangements associated with ideals of an exceptional root system.

The Tutte Polynomial of Ideal Arrangements

Hery Randriamaro

Universität Kassel
OBERSEMINAR
Algorithmische Algebra und Diskrete Mathematik
July 28, 2021

Tutte Polynomial

We work on the Euclidean space \mathbb{R}^{n}.

Tutte Polynomial

We work on the Euclidean space \mathbb{R}^{n}.
Take a vector $a=\left(a_{1}, \ldots, a_{n}\right)$, and real variables x_{1}, \ldots, x_{n}. A hyperplane is a subspace $a^{\perp}:=\left\{a_{1} x_{1}+\cdots+a_{n} x_{n}=0\right\}$ of \mathbb{R}^{n}. A hyperplane arrangement is a finite set of hyperplanes.

Tutte Polynomial

We work on the Euclidean space \mathbb{R}^{n}.
Take a vector $a=\left(a_{1}, \ldots, a_{n}\right)$, and real variables x_{1}, \ldots, x_{n}. A hyperplane is a subspace $a^{\perp}:=\left\{a_{1} x_{1}+\cdots+a_{n} x_{n}=0\right\}$ of \mathbb{R}^{n}. A hyperplane arrangement is a finite set of hyperplanes.

The rank of a hyperplane arrangement \mathcal{A} is $\operatorname{rk} \mathcal{A}:=n-\operatorname{dim} \bigcap_{H \in \mathcal{A}} H$.

Tutte Polynomial

We work on the Euclidean space \mathbb{R}^{n}.
Take a vector $a=\left(a_{1}, \ldots, a_{n}\right)$, and real variables x_{1}, \ldots, x_{n}. A hyperplane is a subspace $a^{\perp}:=\left\{a_{1} x_{1}+\cdots+a_{n} x_{n}=0\right\}$ of \mathbb{R}^{n}. A hyperplane arrangement is a finite set of hyperplanes.

The rank of a hyperplane arrangement \mathcal{A} is $\operatorname{rk} \mathcal{A}:=n-\operatorname{dim} \bigcap_{H \in \mathcal{A}} H$.
The Tutte polynomial of a hyperplane arrangement \mathcal{A} is

$$
T_{\mathcal{A}}(x, y):=\sum_{\mathcal{B} \subseteq \mathcal{A}}(x-1)^{\mathrm{rk} \mathcal{A}-\mathrm{rk} \mathcal{B}}(y-1)^{\# B-\mathrm{rk} \mathcal{B}}
$$

Tutte Polynomial

The complexification of the hyperplane $H=\left\{a_{1} x_{1}+\cdots+a_{n} x_{n}=0\right\}$ is the complex hyperplane $H_{\mathbb{C}}:=\left\{a_{1} z_{1}+\cdots+a_{n} z_{n}=0\right\}$ with complex variables z_{1}, \ldots, z_{n}.

Let $M_{\mathcal{A}}:=\mathbb{R}^{n} \backslash \bigcup_{H \in \mathcal{A}} H$ and $M_{\mathcal{A}_{\mathbb{C}}}:=\mathbb{C}^{n} \backslash \bigcup_{H \in \mathcal{A}} H_{\mathbb{C}}$:

Tutte Polynomial

The complexification of the hyperplane $H=\left\{a_{1} x_{1}+\cdots+a_{n} x_{n}=0\right\}$ is the complex hyperplane $H_{\mathbb{C}}:=\left\{a_{1} z_{1}+\cdots+a_{n} z_{n}=0\right\}$ with complex variables z_{1}, \ldots, z_{n}.

Let $M_{\mathcal{A}}:=\mathbb{R}^{n} \backslash \bigcup_{H \in \mathcal{A}} H$ and $M_{\mathcal{A}_{\mathbb{C}}}:=\mathbb{C}^{n} \backslash \bigcup_{H \in \mathcal{A}} H_{\mathbb{C}}$:

- the number of connected component of $M_{\mathcal{A}}$ is $T_{\mathcal{A}}(2,0)$,

Tutte Polynomial

The complexification of the hyperplane $H=\left\{a_{1} x_{1}+\cdots+a_{n} x_{n}=0\right\}$ is the complex hyperplane $H_{\mathbb{C}}:=\left\{a_{1} z_{1}+\cdots+a_{n} z_{n}=0\right\}$ with complex variables z_{1}, \ldots, z_{n}.

Let $M_{\mathcal{A}}:=\mathbb{R}^{n} \backslash \bigcup_{H \in \mathcal{A}} H$ and $M_{\mathcal{A}_{\mathbb{C}}}:=\mathbb{C}^{n} \backslash \bigcup_{H \in \mathcal{A}} H_{\mathbb{C}}$:

- the number of connected component of $M_{\mathcal{A}}$ is $T_{\mathcal{A}}(2,0)$,
- the number of bounded connected component of $M_{\mathcal{A}}$ is $(-1)^{\mathrm{rk} \mathcal{A}} T_{\mathcal{A}}(0,0)$,

Tutte Polynomial

The complexification of the hyperplane $H=\left\{a_{1} x_{1}+\cdots+a_{n} x_{n}=0\right\}$ is the complex hyperplane $H_{\mathbb{C}}:=\left\{a_{1} z_{1}+\cdots+a_{n} z_{n}=0\right\}$ with complex variables z_{1}, \ldots, z_{n}.

Let $M_{\mathcal{A}}:=\mathbb{R}^{n} \backslash \bigcup_{H \in \mathcal{A}} H$ and $M_{\mathcal{A}_{\mathbb{C}}}:=\mathbb{C}^{n} \backslash \bigcup_{H \in \mathcal{A}} H_{\mathbb{C}}$:

- the number of connected component of $M_{\mathcal{A}}$ is $T_{\mathcal{A}}(2,0)$,
- the number of bounded connected component of $M_{\mathcal{A}}$ is $(-1)^{\mathrm{rk}} \mathcal{A} T_{\mathcal{A}}(0,0)$,
- the Poincaré polynomial of the cohomology ring of $M_{\mathcal{A}_{\mathbb{C}}}$ is

$$
\sum_{k \in \mathbb{N}} \operatorname{rank} H^{k}\left(M_{\mathcal{A}_{\mathbb{C}}}, \mathbb{Z}\right) q^{k}=(-1)^{\mathrm{rk} \mathcal{A}} q^{n-\mathrm{rk} \mathcal{A}} T_{\mathcal{A}}(1-q, 0)
$$

Root System

The reflection associated to the hyperplane a^{\perp} is the orthogonal transformation $s_{a^{\perp}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $s_{a^{\prime}}(x):=x-2 \frac{\langle x, a\rangle}{\langle a, a\rangle} a$.

Root System

The reflection associated to the hyperplane a^{\perp} is the orthogonal transformation $s_{a^{\perp}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $s_{a^{\prime}}(x):=x-2 \frac{\langle x, a\rangle}{\langle a, a\rangle} a$.

A hyperplane arrangement \mathcal{A} is a Coxeter arrangement if

$$
\forall H, H^{\prime} \in \mathcal{A}: s_{H}\left(H^{\prime}\right) \in \mathcal{A}
$$

Root System

The reflection associated to the hyperplane a^{\perp} is the orthogonal transformation $s_{a^{\perp}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $s_{a^{\prime}}(x):=x-2 \frac{\langle x, a\rangle}{\langle a, a\rangle} a$.

A hyperplane arrangement \mathcal{A} is a Coxeter arrangement if

$$
\forall H, H^{\prime} \in \mathcal{A}: s_{H}\left(H^{\prime}\right) \in \mathcal{A}
$$

Let \mathcal{A} be a Coxeter arrangement, and Φ a set of vectors a such that $a^{\perp} \in \mathcal{A}$. Then Φ is a root system of \mathcal{A} if

- $\forall a \in \Phi: \Phi \cap \mathbb{R} a=\{a,-a\}$,
- $\forall a \in \Phi: s_{a} \perp(\Phi)=\Phi$.

Root System

The reflection associated to the hyperplane a^{\perp} is the orthogonal transformation $s_{a} \perp: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $s_{a} \perp(x):=x-2 \frac{\langle x, a\rangle}{\langle a, a\rangle} a$.

A hyperplane arrangement \mathcal{A} is a Coxeter arrangement if

$$
\forall H, H^{\prime} \in \mathcal{A}: s_{H}\left(H^{\prime}\right) \in \mathcal{A}
$$

Let \mathcal{A} be a Coxeter arrangement, and Φ a set of vectors a such that $a^{\perp} \in \mathcal{A}$. Then Φ is a root system of \mathcal{A} if

- $\forall a \in \Phi: \Phi \cap \mathbb{R} a=\{a,-a\}$,
- $\forall a \in \Phi: s_{a} \perp(\Phi)=\Phi$.

A vector of a root system is called a root.

Crystallographic Root System

A root system Φ is crystallographic if for every $u, v \in \Phi, 2 \frac{\langle u, v\rangle}{\langle v, v\rangle} \in \mathbb{Z}$.

Crystallographic Root System

A root system Φ is crystallographic if for every $u, v \in \Phi, 2 \frac{\langle u, v\rangle}{\langle v, v\rangle} \in \mathbb{Z}$.
A root system Φ is reducible if there are two nonempty subsets $\Phi_{1}, \Phi_{2} \subseteq \Phi$ such that $\Phi=\Phi_{1} \sqcup \Phi_{2}$ and $\left\langle u_{1}, u_{2}\right\rangle=0$ for every $\left(u_{1}, u_{2}\right) \in \Phi_{1} \times \Phi_{2}$.

Crystallographic Root System

A root system Φ is crystallographic if for every $u, v \in \Phi, 2 \frac{\langle u, v\rangle}{\langle v, v\rangle} \in \mathbb{Z}$.
A root system Φ is reducible if there are two nonempty subsets $\Phi_{1}, \Phi_{2} \subseteq \Phi$ such that $\Phi=\Phi_{1} \sqcup \Phi_{2}$ and $\left\langle u_{1}, u_{2}\right\rangle=0$ for every $\left(u_{1}, u_{2}\right) \in \Phi_{1} \times \Phi_{2}$. There are nine types of irreducible crystallographic root systems: The four classical infinite families of root systems

$$
\begin{array}{ll}
(n \geq 2) & \Phi_{A_{n-1}}=\left\{e_{i}-e_{j} \mid 1 \leq i \neq j \leq n\right\}, \\
(n \geq 2) & \Phi_{B_{n}}=\left\{ \pm e_{i} \pm e_{j} \mid 1 \leq i<j \leq n\right\} \cup\left\{ \pm e_{i} \mid i \in[n]\right\}, \\
(n \geq 2) & \Phi_{C_{n}}=\left\{ \pm e_{i} \pm e_{j} \mid 1 \leq i<j \leq n\right\} \cup\left\{ \pm 2 e_{i} \mid i \in[n]\right\}, \\
(n \geq 4) & \Phi_{D_{n}}=\left\{ \pm e_{i} \pm e_{j} \mid 1 \leq i<j \leq n\right\},
\end{array}
$$

Crystallographic Root System

and the five exceptional root systems

$$
\begin{aligned}
& \Phi_{G_{2}}=\left\{ \pm\left(e_{i}-e_{j}\right)\right\}_{1 \leq i<j \leq 3} \sqcup\left\{ \pm\left(2 e_{i}-e_{j}-e_{k}\right)\right\}_{\{i, j, k\}=\{1,2,3\}}, \\
& \Phi_{F_{4}}=\left\{ \pm e_{i}\right\}_{i \in[4]} \sqcup\left\{ \pm e_{i} \pm e_{j}\right\}_{1 \leq i<j \leq 4} \sqcup\left\{\frac{1}{2}\left(\pm e_{1} \pm e_{2} \pm e_{3} \pm e_{4}\right)\right\},
\end{aligned}
$$

$$
\Phi_{E_{8}}=\left\{ \pm e_{i} \pm e_{j}\right\}_{1 \leq i<j \leq 8} \sqcup\left\{\frac{1}{2} \sum_{i=1}^{8} \pm e_{i} \text { even number of }+\right\},
$$

$$
\Phi_{E_{7}}=\left\{ \pm e_{i} \pm e_{j}\right\}_{1 \leq i<j \leq 6} \sqcup\left\{ \pm\left(e_{7}-e_{8}\right)\right\}
$$

$$
\sqcup\left\{ \pm \frac{1}{2}\left(e_{7}-e_{8}+\left(\sum_{i=1}^{6} \pm e_{i} \text { odd number of }+\right)\right)\right\}
$$

Root System Ideal

Let Φ be a crystallographic root system.

Root System Ideal

Let Φ be a crystallographic root system. There exist some subsets $\Delta \subseteq \Phi$, called simple systems, such that $\langle\Delta\rangle=\mathbb{R}^{n}$ and each root in Φ is a linear combination of roots in Δ with coefficients all of the same sign.

Root System Ideal

Let Φ be a crystallographic root system. There exist some subsets $\Delta \subseteq \Phi$, called simple systems, such that $\langle\Delta\rangle=\mathbb{R}^{n}$ and each root in Φ is a linear combination of roots in Δ with coefficients all of the same sign. Fixing a simple system Δ in a root system Φ, a positive root system Φ^{+} consists of the roots with positive coefficients.

Root System Ideal

Let Φ be a crystallographic root system. There exist some subsets
$\Delta \subseteq \Phi$, called simple systems, such that $\langle\Delta\rangle=\mathbb{R}^{n}$ and each root in Φ is a linear combination of roots in Δ with coefficients all of the same sign. Fixing a simple system Δ in a root system Φ, a positive root system Φ^{+} consists of the roots with positive coefficients.

Endow Φ^{+}with the partial order \preceq defined for all $u, v \in \Phi^{+}$by

$$
u \preceq v \Longleftrightarrow v-u \in \mathbb{N} \Phi^{+} .
$$

Root System Ideal

Let Φ be a crystallographic root system. There exist some subsets
$\Delta \subseteq \Phi$, called simple systems, such that $\langle\Delta\rangle=\mathbb{R}^{n}$ and each root in Φ is a linear combination of roots in Δ with coefficients all of the same sign. Fixing a simple system Δ in a root system Φ, a positive root system Φ^{+} consists of the roots with positive coefficients.

Endow Φ^{+}with the partial order \preceq defined for all $u, v \in \Phi^{+}$by

$$
u \preceq v \Longleftrightarrow v-u \in \mathbb{N} \Phi^{+} .
$$

An ideal of a crystallographic root system Φ is a subset $I \subseteq \Phi^{+}$such that

Ideal Arrangement

The ideal arrangement $\mathcal{A}_{\text {I }}$ associated to an ideal / of a crystallographic root system Φ is the hyperplane arrangement defined by

$$
\mathcal{A}_{l}:=\left\{u^{\perp} \mid u \in \Phi^{+} \backslash I\right\} .
$$

Ideal Arrangement

The ideal arrangement $\mathcal{A}_{\text {I }}$ associated to an ideal / of a crystallographic root system Φ is the hyperplane arrangement defined by

$$
\mathcal{A}_{l}:=\left\{u^{\perp} \mid u \in \Phi^{+} \backslash l\right\} .
$$

Sommers and Tymoczko showed in 2006 that the arrangement $\mathcal{A}_{\mathcal{I}}$ is free if I is an ideal of a classical root system or of $\Phi_{G_{2}}$.

Ideal Arrangement

The ideal arrangement $\mathcal{A}_{\text {I }}$ associated to an ideal / of a crystallographic root system Φ is the hyperplane arrangement defined by

$$
\mathcal{A}_{l}:=\left\{u^{\perp} \mid u \in \Phi^{+} \backslash l\right\} .
$$

Sommers and Tymoczko showed in 2006 that the arrangement $\mathcal{A}_{\mathcal{I}}$ is free if I is an ideal of a classical root system or of $\Phi_{G_{2}}$. Extending their work, Abe, Barakat, Cuntz, Hoge and Terao established in 2016 that each ideal arrangement is free.

Ideal Arrangement

The ideal arrangement $\mathcal{A}_{\text {I }}$ associated to an ideal / of a crystallographic root system Φ is the hyperplane arrangement defined by

$$
\mathcal{A}_{l}:=\left\{u^{\perp} \mid u \in \Phi^{+} \backslash I\right\} .
$$

Sommers and Tymoczko showed in 2006 that the arrangement $\mathcal{A}_{\mathcal{I}}$ is free if I is an ideal of a classical root system or of $\Phi_{G_{2}}$. Extending their work, Abe, Barakat, Cuntz, Hoge and Terao established in 2016 that each ideal arrangement is free. One year later, Röhrle showed that a large class of ideal arrangements satisfies the stronger property of inductive freeness and conjectured that this property holds for all $\mathcal{A}_{\mathcal{I}}$.

Ideal Arrangement

The ideal arrangement $\mathcal{A}_{\text {I }}$ associated to an ideal / of a crystallographic root system Φ is the hyperplane arrangement defined by

$$
\mathcal{A}_{l}:=\left\{u^{\perp} \mid u \in \Phi^{+} \backslash l\right\} .
$$

Sommers and Tymoczko showed in 2006 that the arrangement $\mathcal{A}_{\mathcal{I}}$ is free if I is an ideal of a classical root system or of $\Phi_{G_{2}}$. Extending their work, Abe, Barakat, Cuntz, Hoge and Terao established in 2016 that each ideal arrangement is free. One year later, Röhrle showed that a large class of ideal arrangements satisfies the stronger property of inductive freeness and conjectured that this property holds for all $\mathcal{A}_{\mathcal{I}}$. Cuntz, Röhrle, and Schauenburg confirmed this conjecture in 2019.

Coboundary Polynomial

The coboundary polynomial of a hyperplane arrangement \mathcal{A} is

$$
\bar{\chi}_{\mathcal{A}}(q, t):=\sum_{\mathcal{B} \subseteq \mathcal{A}} q^{\mathrm{rk} \mathcal{A}-\mathrm{rk} \mathcal{B}}(t-1)^{\# \mathcal{B}} .
$$

Coboundary Polynomial

The coboundary polynomial of a hyperplane arrangement \mathcal{A} is

$$
\bar{\chi}_{\mathcal{A}}(q, t):=\sum_{\mathcal{B} \subseteq \mathcal{A}} q^{\mathrm{rk} \mathcal{A}-\mathrm{rk} \mathcal{B}}(t-1)^{\# \mathcal{B}} .
$$

Since $T_{\mathcal{A}}(x, y)=\frac{\bar{\chi}_{\mathcal{A}}((x-1)(y-1), y)}{(y-1)^{\mathrm{rk} \mathcal{A}}}$, computing the coboundary polynomial is equivalent to computing the Tutte polynomial.

Correct Reduction

Define the semilattice $L(\mathcal{A}):=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\}$ partially ordered by reverse inclusion.

Correct Reduction

Define the semilattice $L(\mathcal{A}):=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\}$ partially ordered by reverse inclusion. Two hyperplane arrangements \mathcal{A} and \mathcal{B} are isomorphic if there is an order preserving bijection between the $L(\mathcal{A})$ and $L(\mathcal{B})$.

Correct Reduction

Define the semilattice $L(\mathcal{A}):=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\}$ partially ordered by reverse inclusion. Two hyperplane arrangements \mathcal{A} and \mathcal{B} are isomorphic if there is an order preserving bijection between the $L(\mathcal{A})$ and $L(\mathcal{B})$.

For a \mathbb{Z}-hyperplane $H=\left\{a_{1} x_{1}+\cdots+a_{n} x_{n}=0\right\}$ in \mathbb{R}^{n} and a prime number p, define the set $\bar{H}=\left\{\bar{a}_{1} \bar{x}_{1}+\cdots+\bar{a}_{n} \bar{x}_{n}=\overline{0}\right\}$ in \mathbb{F}_{p}^{n}.

Correct Reduction

Define the semilattice $L(\mathcal{A}):=\left\{\bigcap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A}\right\}$ partially ordered by reverse inclusion. Two hyperplane arrangements \mathcal{A} and \mathcal{B} are isomorphic if there is an order preserving bijection between the $L(\mathcal{A})$ and $L(\mathcal{B})$.

For a \mathbb{Z}-hyperplane $H=\left\{a_{1} x_{1}+\cdots+a_{n} x_{n}=0\right\}$ in \mathbb{R}^{n} and a prime number p, define the set $\bar{H}=\left\{\bar{a}_{1} \bar{x}_{1}+\cdots+\bar{a}_{n} \bar{x}_{n}=\overline{0}\right\}$ in \mathbb{F}_{p}^{n}. One says that a \mathbb{Z}-arrangement \mathcal{A} reduces correctly over \mathbb{F}_{p} if

- for every hyperplane H in \mathcal{A}, \bar{H} is a hyperplane in \mathbb{F}_{p}^{n},
- and, if we define $\overline{\mathcal{A}}:=\{\bar{H} \mid H \in \mathcal{A}\}, \mathcal{A}$ and $\overline{\mathcal{A}}$ are isomorphic.

Finite Field Method

For a hyperplane arrangement $\overline{\mathcal{A}}$ and a vector \bar{x} in \mathbb{F}_{p}^{n}, define the arrangement

$$
\overline{\mathcal{A}}(\bar{x}):=\{\bar{H} \in \overline{\mathcal{A}} \mid \bar{x} \in \bar{H}\} .
$$

Finite Field Method

For a hyperplane arrangement $\overline{\mathcal{A}}$ and a vector \bar{x} in \mathbb{F}_{ρ}^{n}, define the arrangement

$$
\overline{\mathcal{A}}(\bar{x}):=\{\bar{H} \in \overline{\mathcal{A}} \mid \bar{x} \in \bar{H}\} .
$$

Consider a \mathbb{Z}-arrangement \mathcal{A} in \mathbb{R}^{n} that reduces correctly over \mathbb{F}_{p}. Then

$$
p^{n-\mathrm{rk} \mathcal{A}} \bar{\chi}_{\mathcal{A}}(p, t)=\sum_{\bar{x} \in \mathbb{F}_{p}^{n}} t^{\# \overline{\mathcal{A}}(\bar{x})}
$$

Example

Consider the arrangement $\mathcal{A}_{A_{n-1}}=\left\{\left\{x_{i}-x_{j}=0\right\}\right\}_{1 \leq i<j \leq n}$.

Example

Consider the arrangement $\mathcal{A}_{A_{n-1}}=\left\{\left\{x_{i}-x_{j}=0\right\}\right\}_{1 \leq i<j \leq n}$.
We have $\operatorname{rk} \mathcal{A}_{A_{n-1}}=n-1$ and

$$
\overline{\mathcal{A}}_{A_{n-1}}(\bar{x})=\binom{\# X_{0}}{2}+\cdots+\binom{\# X_{p-1}}{2} \text { with } X_{k}=\left\{i \in[n] \mid \bar{x}_{i}=k\right\} .
$$

Example

Consider the arrangement $\mathcal{A}_{A_{n-1}}=\left\{\left\{x_{i}-x_{j}=0\right\}\right\}_{1 \leq i<j \leq n}$.
We have $\operatorname{rk} \mathcal{A}_{A_{n-1}}=n-1$ and

$$
\overline{\mathcal{A}}_{A_{n-1}}(\bar{x})=\binom{\# X_{0}}{2}+\cdots+\binom{\# X_{p-1}}{2} \text { with } X_{k}=\left\{i \in[n] \mid \bar{x}_{i}=k\right\}
$$

Example

Consider the arrangement $\mathcal{A}_{A_{n-1}}=\left\{\left\{x_{i}-x_{j}=0\right\}\right\}_{1 \leq i<j \leq n}$.
We have $\operatorname{rk} \mathcal{A}_{A_{n-1}}=n-1$ and

$$
\overline{\mathcal{A}}_{A_{n-1}}(\bar{x})=\binom{\# X_{0}}{2}+\cdots+\binom{\# X_{p-1}}{2} \text { with } X_{k}=\left\{i \in[n] \mid \bar{x}_{i}=k\right\}
$$

Thus $q \bar{\chi}_{\mathcal{A}_{A_{n-1}}}(p, t)=\sum_{X_{0} \sqcup \cdots \sqcup X_{p-1}=[n]} t \begin{gathered}\left(\# x_{0}\right)+\cdots+\binom{\# x_{p-1}}{2} .\end{gathered}$

Tutte Polynomial of Classical Ideal

Let \mathcal{A}_{l} be an ideal arrangement of $\Phi_{A_{n-1}}$ with partition $A^{(1)}|\ldots| A^{(r)}$, and let $R^{(u)}=\left\{v \in\{u+1, \ldots, r\} \mid s_{l}\left(A^{(u)}\right) \cap s_{l}\left(A^{(v)}\right) \neq \emptyset\right\}$. Then, the coboundary polynomial of \mathcal{A}_{l} is

$$
\begin{aligned}
& \bar{\chi}_{\mathcal{A}_{l}}(p, t)= \sum_{a_{1}^{(1)}+\cdots+a_{p}^{(1)}}=\# A^{(1)} \\
& \vdots \\
& \prod_{u=1}^{r}\binom{\# A^{(u)}}{a_{1}^{(u)}, \ldots, a_{p}^{(u)}} \frac{t^{\sum_{s=1}^{p}\binom{(u)}{a_{2}}+a_{s}^{(u)} \sum_{v \in R^{(u)}} a_{s}^{(v)}}}{p} . \\
& a_{1}^{(r)}+\cdots+a_{p}^{(r)}=\# A^{(r)}
\end{aligned}
$$

Active Elements

Let X be a vector set in \mathbb{R}^{n}.

Alexander von Humboldt

Active Elements

Let X be a vector set in \mathbb{R}^{n}. The rank of $A \subseteq X$ is $\operatorname{rk} A:=\operatorname{rk}\left\{a^{\perp}\right\}_{a \in A}$.

Active Elements

Let X be a vector set in \mathbb{R}^{n}. The rank of $A \subseteq X$ is $\operatorname{rk} A:=\operatorname{rk}\left\{a^{\perp}\right\}_{a \in A}$. Denote by $\mathscr{B}(X)$ the basis set of X.

Active Elements

Let X be a vector set in \mathbb{R}^{n}. The rank of $A \subseteq X$ is $\operatorname{rk} A:=\operatorname{rk}\left\{a^{\perp}\right\}_{a \in A}$. Denote by $\mathscr{B}(X)$ the basis set of X. Let \triangleleft be a linear order on X.

Active Elements

Let X be a vector set in \mathbb{R}^{n}. The rank of $A \subseteq X$ is $\operatorname{rk} A:=\operatorname{rk}\left\{a^{\perp}\right\}_{a \in A}$. Denote by $\mathscr{B}(X)$ the basis set of X. Let \triangleleft be a linear order on X. Define the set $A_{\triangleleft x}:=\{a \in A \mid a \triangleleft x\}$.

Active Elements

Let X be a vector set in \mathbb{R}^{n}. The rank of $A \subseteq X$ is $\operatorname{rk} A:=\operatorname{rk}\left\{a^{\perp}\right\}_{a \in A}$. Denote by $\mathscr{B}(X)$ the basis set of X. Let \triangleleft be a linear order on X. Define the set $A_{\triangleleft x}:=\{a \in A \mid a \triangleleft x\}$.
Take a basis B in $\mathscr{B}(X)$:

Active Elements

Let X be a vector set in \mathbb{R}^{n}. The rank of $A \subseteq X$ is $\operatorname{rk} A:=\operatorname{rk}\left\{a^{\perp}\right\}_{a \in A}$. Denote by $\mathscr{B}(X)$ the basis set of X. Let \triangleleft be a linear order on X. Define the set $A_{\triangleleft x}:=\{a \in A \mid a \triangleleft x\}$.
Take a basis B in $\mathscr{B}(X)$:

- Let $b \in B$. One says that b is an internal active element of B if

$$
\forall x \in X_{\triangleleft b} \backslash B: \operatorname{rk}(\{x\} \sqcup(B \backslash\{b\}))<n .
$$

Active Elements

Let X be a vector set in \mathbb{R}^{n}. The rank of $A \subseteq X$ is $\operatorname{rk} A:=\operatorname{rk}\left\{a^{\perp}\right\}_{a \in A}$. Denote by $\mathscr{B}(X)$ the basis set of X. Let \triangleleft be a linear order on X. Define the set $A_{\triangleleft x}:=\{a \in A \mid a \triangleleft x\}$.
Take a basis B in $\mathscr{B}(X)$:

- Let $b \in B$. One says that b is an internal active element of B if

$$
\forall x \in X_{\triangleleft b} \backslash B: \operatorname{rk}(\{x\} \sqcup(B \backslash\{b\}))<n
$$

- Let $x \in X \backslash B$. One says that x is an external active element of B if

$$
\operatorname{rk}\left(\{x\} \sqcup B_{\triangleright x}\right)=\operatorname{rk}\left(B_{\triangleright x}\right)
$$

Theorem of Crapo

Denote by $i(B)$ resp. $e(B)$ the number of internal resp. external active elements of a basis B.

Theorem of Crapo

Denote by $i(B)$ resp. $e(B)$ the number of internal resp. external active elements of a basis B. The Tutte polynomial of a hyperplane arrangement $\mathcal{A}=\left\{x^{\perp}\right\}_{x \in X}$ is

$$
T_{\mathcal{A}}(x, y)=\sum_{B \in \mathscr{B}(X)} x^{i(B)} y^{e(B)}
$$

Theorem of Crapo

Denote by $i(B)$ resp. $e(B)$ the number of internal resp. external active elements of a basis B. The Tutte polynomial of a hyperplane arrangement $\mathcal{A}=\left\{x^{\perp}\right\}_{x \in X}$ is

$$
T_{\mathcal{A}}(x, y)=\sum_{B \in \mathscr{B}(X)} x^{i(B)} y^{e(B)}
$$

The algorithm from the definition of the Tutte polynomial would implement $\binom{\# X}{k}$ sets of cardinality k, where k varies from 1 to $\# X$.

Theorem of Crapo

Denote by $i(B)$ resp. $e(B)$ the number of internal resp. external active elements of a basis B. The Tutte polynomial of a hyperplane arrangement $\mathcal{A}=\left\{x^{\perp}\right\}_{x \in X}$ is

$$
T_{\mathcal{A}}(x, y)=\sum_{B \in \mathscr{B}(X)} x^{i(B)} y^{e(B)} .
$$

The algorithm from the definition of the Tutte polynomial would implement $\binom{\# X}{k}$ sets of cardinality k, where k varies from 1 to $\# X$. The formula of Crapo reduces the algorithm implementation on $\binom{\# X}{\operatorname{rk} X}$ sets of cardinality $\mathrm{rk} X$.

Graph Representation of E_{6}

Alexander von Humboldt
Stiftung/Foundation

Example

$I=((1,1,1,2,1,0),(1,1,1,2,1,1),(1,1,2,2,1,0),(1,1,2,2,1,1)$, $(1,1,1,2,2,1),(1,1,2,2,2,1),(1,1,2,3,2,1),(1,2,2,3,2,1))$ is an ideal of $\Phi_{E_{6}}^{+}$, and the Tutte polynomial of its associated ideal arrangement is

Example

$I=((1,1,1,2,1,0),(1,1,1,2,1,1),(1,1,2,2,1,0),(1,1,2,2,1,1)$,
$(1,1,1,2,2,1),(1,1,2,2,2,1),(1,1,2,3,2,1),(1,2,2,3,2,1))$ is an ideal of $\Phi_{E_{6}}^{+}$, and the Tutte polynomial of its associated ideal arrangement is
$T_{\mathcal{A}_{l_{e}}}(x, y)=y^{22}+6 y^{21}+21 y^{20}+56 y^{19}+126 y^{18}+252 y^{17}+x y^{15}$ $+462 y^{16}+5 x y^{14}+791 y^{15}+18 x y^{13}+1281 y^{14}+52 x y^{12}+1978 y^{13}$ $+129 x y^{11}+2927 y^{12}+295 x y^{10}+4163 y^{11}+5 x^{2} y^{8}+623 x y^{9}+5688 y^{10}+$ $26 x^{2} y^{7}+1212 x y^{8}+7445 y^{9}+110 x^{2} y^{6}+2176 x y^{7}+9288 y^{8}+346 x^{2} y^{5}+$ $3596 x y^{6}+10957 y^{7}+x^{6}+79 x^{3} y^{3}+892 x^{2} y^{4}+5404 x y^{5}+12065 y^{6}+$ $22 x^{5}+62 x^{4} y+303 x^{3} y^{2}+1829 x^{2} y^{3}+7235 x y^{4}+12159 y^{5}+191 x^{4}$ $+762 x^{3} y+2863 x^{2} y^{2}+8292 x y^{3}+10860 y^{4}+818 x^{3}+3184 x^{2} y+$ $7646 x y^{2}+8136 y^{3}+1728 x^{2}+4872 x y+4584 y^{2}+1440 x+1440 y$.

Bibliography

目 F．Ardila，Computing the Tutte Polynomial of a Hyperplane Arrangement，Pacific J．Math．（230） 1 （2007），1－26．
© C．De Concini，C．Procesi，The Zonotope of a Root System， Transform．Groups（13）3－4（2008），507－526．

E．P．Orlik，L．Solomon，Combinatorics and Topology of Complements of Hyperplanes，Invent．Math．（56） 2 （1980），167－189．

國 H．Randriamaro，The Tutte Polynomial of Ideal Arrangements， Discrete Math．Algorithms Appl．（12） 2 （2020） 2050017.
回 G．Roehrle，Arrangements of Ideal Type，J．Algebra（484）（2017）， 126－167．
E．Sommers，J．Tymoczko，Exponents for B－stable Idealspmediranas．redy Amer．Math．Soc．（358） 8 （2006），3493－3509．

Thank You for your Attention!

Alexander von Humboldt

