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Abstract:

The Tutte polynomial was at the origin in 1954 a bivariate polynomial enumerating the colorings
of a graph and of its dual graph. But it reveals more of the internal structure of the graph like its
number of forests, of spanning subgraphs, and of acyclic orientations.
Ardila extended in 2007 the notion of Tutte polynomial to hyperplane arrangements. At the same
time, he computed the Tutte polynomial of the hyperplane arrangements associated with the root
systems of the classical Weyl groups. The Tutte polynomials associated to the root systems of the
exceptional Weyl groups were computed by De Concini and Procesi one year later.
We consider the hyperplane arrangements associated with ideals of the root system of a Weyl
group. These arrangements were introduced in 2006 by Sommers and Tymoczko. The talk as-
sumes that the subject does not belong to the main field of expertise of a significant part of the
audience. That is why enough time will be taken to define important notions like the Tutte polyno-
mial, the Weyl groups, and the ideals of a root system even if they could seem to be basic.
We also expose our results from 2020 concerning the Tutte polynomial of hyperplane arrange-
ments associated with ideals of a classical root system. Then, we finish with an introduction of an
open problem on the Tutte polynomial of hyperplane arrangements associated with ideals of an
exceptional root system.

gez. Prof. Dr. Wolfram Koepf
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Tutte Polynomial

We work on the Euclidean space Rn.

Take a vector a = (a1, . . . , an), and real variables x1, . . . , xn. A
hyperplane is a subspace a⊥ := {a1x1 + · · ·+ anxn = 0} of Rn. A
hyperplane arrangement is a finite set of hyperplanes.

The rank of a hyperplane arrangement A is rkA := n − dim
⋂
H∈A

H.

The Tutte polynomial of a hyperplane arrangement A is

TA(x , y) :=
∑
B⊆A

(x − 1)rkA−rkB(y − 1)#B−rkB.
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Tutte Polynomial

The complexification of the hyperplane H = {a1x1 + · · ·+ anxn = 0} is the
complex hyperplane HC := {a1z1 + · · ·+ anzn = 0} with complex variables
z1, . . . , zn.

Let MA := Rn \
⋃
H∈A

H and MAC := Cn \
⋃
H∈A

HC:

the number of connected component of MA is TA(2, 0),

the number of bounded connected component of MA is
(−1)rkATA(0, 0),

the Poincaré polynomial of the cohomology ring of MAC is∑
k∈N

rankHk(MAC ,Z) qk = (−1)rkAqn−rkATA(1− q, 0).
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Root System

The reflection associated to the hyperplane a⊥ is the orthogonal

transformation sa⊥ : Rn → Rn defined by sa⊥(x) := x − 2
〈x , a〉
〈a, a〉

a.

A hyperplane arrangement A is a Coxeter arrangement if

∀H,H ′ ∈ A : sH(H ′) ∈ A.

Let A be a Coxeter arrangement, and Φ a set of vectors a such that
a⊥ ∈ A. Then Φ is a root system of A if

∀a ∈ Φ : Φ ∩ Ra = {a,−a},
∀a ∈ Φ : sa⊥(Φ) = Φ.

A vector of a root system is called a root.
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Crystallographic Root System

A root system Φ is crystallographic if for every u, v ∈ Φ, 2
〈u, v〉
〈v , v〉

∈ Z.

A root system Φ is reducible if there are two nonempty subsets
Φ1,Φ2 ⊆ Φ such that Φ = Φ1 t Φ2 and 〈u1, u2〉 = 0 for every
(u1, u2) ∈ Φ1 × Φ2. There are nine types of irreducible crystallographic
root systems: The four classical infinite families of root systems

(n ≥ 2) ΦAn−1 = {ei − ej | 1 ≤ i 6= j ≤ n},
(n ≥ 2) ΦBn = {±ei ± ej | 1 ≤ i < j ≤ n} ∪ {±ei | i ∈ [n]},
(n ≥ 2) ΦCn = {±ei ± ej | 1 ≤ i < j ≤ n} ∪ {±2ei | i ∈ [n]},
(n ≥ 4) ΦDn = {±ei ± ej | 1 ≤ i < j ≤ n},
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Crystallographic Root System

and the five exceptional root systems

ΦG2 =
{
± (ei − ej)

}
1≤i<j≤3

t
{
± (2ei − ej − ek)

}
{i,j,k}={1,2,3},

ΦF4 = {±ei}i∈[4] t {±ei ± ej}1≤i<j≤4 t
{1

2
(±e1 ± e2 ± e3 ± e4)

}
,

ΦE8 = {±ei ± ej}1≤i<j≤8 t
{1

2

8∑
i=1

±ei even number of +
}
,

ΦE7 = {±ei ± ej}1≤i<j≤6 t
{
± (e7 − e8)

}
t
{
± 1

2

(
e7 − e8 + (

6∑
i=1

±ei odd number of +)
)}
,

ΦE6 = {±ei ± ej}1≤i<j≤5 t
{
± 1

2

(
e8 − e7 − e6 + (

5∑
i=1

±ei odd number of +)
)}
.
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Root System Ideal

Let Φ be a crystallographic root system.

There exist some subsets
∆ ⊆ Φ, called simple systems, such that 〈∆〉 = Rn and each root in Φ is
a linear combination of roots in ∆ with coefficients all of the same sign.
Fixing a simple system ∆ in a root system Φ, a positive root system Φ+

consists of the roots with positive coefficients.

Endow Φ+ with the partial order � defined for all u, v ∈ Φ+ by

u � v ⇐⇒ v − u ∈ NΦ+.

An ideal of a crystallographic root system Φ is a subset I ⊆ Φ+ such that

If u ∈ I , and v ∈ Φ+ so that u � v , then v ∈ I .
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Ideal Arrangement

The ideal arrangement AI associated to an ideal I of a crystallographic
root system Φ is the hyperplane arrangement defined by

AI := {u⊥ | u ∈ Φ+ \ I}.

Sommers and Tymoczko showed in 2006 that the arrangement AI is free
if I is an ideal of a classical root system or of ΦG2 . Extending their work,
Abe, Barakat, Cuntz, Hoge and Terao established in 2016 that each ideal
arrangement is free. One year later, Röhrle showed that a large class of
ideal arrangements satisfies the stronger property of inductive freeness and
conjectured that this property holds for all AI . Cuntz, Röhrle, and
Schauenburg confirmed this conjecture in 2019.

H. Randriamaro (Uni Kassel) Tutte Polynomial 28/07/2021 8 / 19



Ideal Arrangement

The ideal arrangement AI associated to an ideal I of a crystallographic
root system Φ is the hyperplane arrangement defined by

AI := {u⊥ | u ∈ Φ+ \ I}.

Sommers and Tymoczko showed in 2006 that the arrangement AI is free
if I is an ideal of a classical root system or of ΦG2 .

Extending their work,
Abe, Barakat, Cuntz, Hoge and Terao established in 2016 that each ideal
arrangement is free. One year later, Röhrle showed that a large class of
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Coboundary Polynomial

The coboundary polynomial of a hyperplane arrangement A is

χ̄A(q, t) :=
∑
B⊆A

qrkA−rkB(t − 1)#B.

Since TA(x , y) =
χ̄A
(
(x − 1)(y − 1), y

)
(y − 1)rkA

, computing the coboundary

polynomial is equivalent to computing the Tutte polynomial.
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Correct Reduction

Define the semilattice L(A) :=
{ ⋂

H∈B
H
∣∣∣ B ⊆ A} partially ordered by

reverse inclusion.

Two hyperplane arrangements A and B are isomorphic
if there is an order preserving bijection between the L(A) and L(B).

For a Z-hyperplane H = {a1x1 + · · ·+ anxn = 0} in Rn and a prime
number p, define the set H̄ = {ā1x̄1 + · · ·+ ānx̄n = 0̄} in Fn

p. One says
that a Z-arrangement A reduces correctly over Fp if

for every hyperplane H in A, H̄ is a hyperplane in Fn
p,

and, if we define Ā := {H̄ | H ∈ A}, A and Ā are isomorphic.
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Finite Field Method

For a hyperplane arrangement Ā and a vector x̄ in Fn
p, define the

arrangement
Ā(x̄) := {H̄ ∈ Ā | x̄ ∈ H̄}.

Consider a Z-arrangement A in Rn that reduces correctly over Fp. Then

pn−rkAχ̄A(p, t) =
∑
x̄∈Fn

p

t#Ā(x̄).
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Example

Consider the arrangement AAn−1 =
{
{xi − xj = 0}

}
1≤i<j≤n.

We have rkAAn−1 = n − 1 and

ĀAn−1(x̄) =

(
#X0

2

)
+ · · ·+

(
#Xp−1

2

)
with Xk = {i ∈ [n] | x̄i = k}.

Thus qχ̄AAn−1
(p, t) =

∑
X0t···tXp−1=[n]

t(#X0
2 )+···+(#Xp−1

2 ).

And 1 + q
∑
n∈N∗

χ̄AAn−1
(p, t)

an

n!
=

(∑
n∈N

t(n2)
an

n!

)p

.
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Tutte Polynomial of Classical Ideal

Let AI be an ideal arrangement of ΦAn−1 with partition A(1)| . . . |A(r), and

let R(u) =
{
v ∈ {u + 1, . . . , r}

∣∣ sI (A(u)) ∩ sI (A
(v)) 6= ∅

}
. Then, the

coboundary polynomial of AI is

χ̄AI

(
p, t
)

=
∑

a
(1)
1 +···+a

(1)
p = #A(1)

...
a

(r)
1 +···+a

(r)
p = #A(r)

r∏
u=1

(
#A(u)

a
(u)
1 , . . . , a

(u)
p

)
t
∑p

s=1 (a
(u)
s
2 )+a

(u)
s

∑
v∈R(u) a

(v)
s

p
.
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Active Elements

Let X be a vector set in Rn.

The rank of A ⊆ X is rkA := rk {a⊥}a∈A.
Denote by B(X ) the basis set of X . Let � be a linear order on X .
Define the set A�x := {a ∈ A | a� x}.
Take a basis B in B(X ):

Let b ∈ B. One says that b is an internal active element of B if

∀x ∈ X�b \ B : rk
(
{x} t (B \ {b})

)
< n.

Let x ∈ X \ B. One says that x is an external active element of B if

rk
(
{x} t B�x

)
= rk(B�x).
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Theorem of Crapo

Denote by i(B) resp. e(B) the number of internal resp. external active
elements of a basis B.

The Tutte polynomial of a hyperplane arrangement
A = {x⊥}x∈X is

TA(x , y) =
∑

B∈B(X )

x i(B)y e(B).

The algorithm from the definition of the Tutte polynomial would

implement

(
#X

k

)
sets of cardinality k , where k varies from 1 to #X .

The formula of Crapo reduces the algorithm implementation on

(
#X

rkX

)
sets of cardinality rkX .
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Graph Representation of E6
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Example

I =
(
(1, 1, 1, 2, 1, 0), (1, 1, 1, 2, 1, 1), (1, 1, 2, 2, 1, 0), (1, 1, 2, 2, 1, 1),

(1, 1, 1, 2, 2, 1), (1, 1, 2, 2, 2, 1), (1, 1, 2, 3, 2, 1), (1, 2, 2, 3, 2, 1)
)

is an ideal
of Φ+

E6
, and the Tutte polynomial of its associated ideal arrangement is

TAIe
(x , y) = y22 + 6y21 + 21y20 + 56y19 + 126y18 + 252y17 + xy15

+462y16 + 5xy14 + 791y15 + 18xy13 + 1281y14 + 52xy12 + 1978y13

+129xy11 + 2927y12 + 295xy10 + 4163y11 + 5x2y8 + 623xy9 + 5688y10 +
26x2y7 +1212xy8 + 7445y9 + 110x2y6 + 2176xy7 + 9288y8 + 346x2y5 +
3596xy6 + 10957y7 +x6 + 79x3y3 + 892x2y4 + 5404xy5 + 12065y6 +
22x5 + 62x4y + 303x3y2 + 1829x2y3 + 7235xy4 + 12159y5 + 191x4

+762x3y + 2863x2y2 + 8292xy3 + 10860y4 + 818x3 + 3184x2y +
7646xy2 + 8136y3 +1728x2 + 4872xy + 4584y2 + 1440x + 1440y .
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